
PMM U.S.S.R.,Vo1.44,pp.531-536 

Copyright Pergamon Press Ltd.1981.Printed in U.K. 

0021-8928/81/4 0531 $7.50/o 

UUC 539.375 

ON CONTACT OF THE CRACK EDGES* 

V. B. PEN'KOV and L. A. TOLOKONNIKOV 

There is considered an infinite elastic plane with a symmetric crack that can be 

mapped into a circle by a rational function. It is assumed that opposite edges of 

the crack come into contact because ofloadingatinfinity. It is also assumed that 

the vertical displacement component is known on the crack contour in the contact 

range; there is no tangential stress because of symmetry, and there are no stresses 

on the free part of the boundary. By means of a suitable selection of two piece- 

wise-meromorphic functions, the boundary conditions result in a Riemann boundary 

value problem for the vector functions holomorphic on a plane slit along pairs of 

circular arcs, and having finite order at infinity. A solution is given in quad- 

ratures for the problem formulated. Conditions are written down which define the 

unknown coefficients of the general solution. A specific example is considered 

when the crack has the profile of a prolate ellipse. 

1. Formulation of the problem. Let us consider a crack with two axes of symmetry, 

subjected to a load symmetric relative to the same axes. 

Let us superpose coordinate axes z,y of a plane z (Fig.1) on the axes of symmetry of 

the crack, and we assume that the crack edges are in mutual contact on the sections AIBI, A,B,. 
Let Lo denote the crack contour, and L the open contours AlBl and A,B,. After deformation, 

part of the contour Lo \ L is load free, and the component u = -y of the displacement 

U = u + iv is defined on L. There are no tangential stresses on L because of symmetry. 

Upon the contact zone approaching the points of crack edge juncture from within, the normal 

stresses on the contour decrease to zero in a continuous manner. 

Fig.1 

By virtue of the double symmetry for which o(- E) = --w (5) and QJ (f) = 0 (5), the 
rational function z = w(E), which maps the exterior of the contour LO conformally on the 

interior D+ of the unit circle l,, in the plane 5 = 1 E 1 exp (ie), has odd powers and the real 

coefficients 

Let us use the notation n = 2k + 1. The mapping mentioned carries a point of the 
contour Lo over into the point lo, in particular, sets up a correspondence between A1 and 
al =a,Bland 61 = --,A, and a, = - a, and B, and b, = CT. 

It is known /l/ that the radial sp, circular (~8, and tangential ~$0 stresses in 

plane 5, as well as the displacements u,U in the plane z, are expressed in terms of 
complex potentials v (E),$ (5). by the dependences (x, 1~ are elastic constants) 

(JIJ + ce = 2 [@ (E) + WEOI, (Jp + qel = ,a (E) + @ (E) -3 lo (5) W(5) + o’(E) Y (S)lX[EO’ (E_)P 

2p (u + iv) = x'p (E)--@'1)(E) - $3, Q (E) 0' (E) ==- 'p' (E), 'Y (E)o' (5) = 4:' (5) 

the 

the 

(1.1) 

The boundary conditions mentioned for the use of (1.1) are represented in the form 

F1 (a) G UC2 - ircz = 0, IS E I, (1.2) 

2 / 0’ 12 (d) + 3)) - acz - TiT% = 0, CT E lo \ 1 ( Q (xc - B) + a, (XC - c) f 02 +- az = 4@,csE 1 (1.3) 
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- 
where the notation c = (JO' (o), Z y w (a) m'(u) + w' (a)Y ((J), U' ~~ dv / de = ‘/, (C $- T) has been intro- 

duced for brevity and the arguments have been omitted. The conditions (1.3) can be replaced 
by equivalent conditions by combining them with (1.2) 

F, (u)= F (CII + 37) - uz = 0,o E 10 \ 1, F3 (0)= (IJ (xc - E)+' (xc -~ c)+ Is (1 i- CiC)Z r 41'U'> GE 1 (1.4) 

Let us introduce the piecewise-holomorphic vector Q (5) 7. {QI,~,) related to the potent- 

ials @ (E),Y (9 for I El 
unit circle lo 

< 1 and their propagations by symmetry 3 (E-l).Y(E-') through the 
by the formulas 

Let us consider FI (o), F, (a). /"s (n) as values on the contour lo for the functions 1'1 (E), 
F, (E), r3 (E). Let us manipulate these latter by using (1.5), and let us pass to the limit as 
5 - D. We obtain boundary conditions corresponding to (1.2) and (1.4) 

C (52,' - Q-) -f W' (n; - Q2;) 0. 0 E lo (1.6) 
Q2,' - Cl,_ = u, (J E I, \ 1 (1.7) 

(c + a) Q1+ + (xa - c)QC + (x + 1) T;i,sl: : (i/U?'C, (J E 1 (1.8) 

where the plus and minus superscripts denote the limits of the functions as they approach the 

contour lo from D'and D; respectively. 

The relationship (1.6) on the contour lo \ 1 has the form 

I&+ - o*- = 0, 0 E 20 \ 1 (1.9) 

and it can be converted on the contour 1 to the form 

(E - xc) Q,f + x (c + B) C&- + (X -I- 1) E' C&- = 4pv’c. CT El (1.10) 

The conditions (1.7)- (1.10) pose a Riemann boundary value problem for the vector Q (9, 
which is meromorphic on the circle LO slit along the arc 1 on the plane E. After having 
solved the system (1.8) and (1.10) for Q+ (a), this problem can be written in matrix form 
thus : 

&+ (u) = G (u) St- (u) + g (u), u E 1 
(1.11) 

G(u) = * “;;+‘1) I (x f 1); I g ((5) = 2p * 
F 

0’ -(c + c’) ’ II I -((I)‘, 

The poles of the vector Q(E) are determined from (1.5): 611(E), R, (E) have poles of the 

order n,l and 2, II - 1, respectively, at zero and infinity. For the piecewise-meromorphic 
vector Q(g), the problem (1.11) is equivalent to the problem for a piecewise-holomorphic 

vector N(t), for which the order of the poles at infinity is n + 1 

s + (Is) = Go ((5) N- (U) + 60 ((T), 0 E 1 (1.12) 

N (5) = E-1 (5) Q (k), Go (0) = 5-l (o)C (a) s (0). Ro (0) - 9-l (u) g (n) 

where 5 (5) is a diagpnal matrix with the principal elements 

The matrices G,(u) and G(u) are nonsingular on 1. 
In fa:; and Em2. 

, their determinant 

A (a) z det G (u) = det G, (0) = (xi' - c) / (xc - 1) 

vanishes nowhere on 1 : the modulus of A(a) on 1 equals one. 

2. Solution of the Riemann problem on open contours. Let us consider the homo- 

geneousproblemcorresponding to (1.12) 

s+ (0) = Go (u)N_ (u). u E I 

Let us represent the matrix Go(u) with rational coefficients in the form 

(2.1) 

(2.2) 

Here H (a) is a diagonal matrix comprised of characteristic fun&irons of the matrix Go (@r 
and R (u) is a polynomial matrix nonsingular on I. 

For the vector S (5) determined by the expression 

S (E) ~~ det K (Q R-l (E) JV (5) (2.3) 

we have the boundary value problem 
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S+ (a) = H (u) S- (o), u E 1 (2.4) 

Equation (2.4) is a set of two independent Riemann problems for the piecewise-holomorphic 

functions S,(E),S, (5) on the open contours I 

s,+ (u) = s,- (a), u E I (2.5) 

S; (u) = A (u) S; (a), o E 1 (2.6) 

Methods to solve the last problems are known /2/. 

We seek canonical solutions of the problems (2.51, (2.6) in the class of functions bound- 

ed on the ends of the contours 1 (let us recall that the stress o,, is zero at these points). 
The function s,(E) is continuous on 1, and has one as canonical solution. The index of 

the problem (2.5) is zero. The problem for 8, (E) on the contour 1, has a discontinuous 

coefficient K (u)equal to A (u) on 1 and 1 on 1, \ 1. 
Let us introduce the functions S,+ (E),S,- (E) by the formulas 

s,* (5) = n* (5) s,* (E), n+ (5) = I(E~ - 2) (52 - ay, II- (5) = [(I - 2 / E’) (1 - 2 / 52)lP (2.7) 

The function n+ (E) is holomorphic on the plane 5 slit along arbitrary lines connecting the 

points f a.&h and CO. The function n- (5) is holomorphic on the plane 5 slit along lines 

connecting 0 and &a, &. The exponent 6characterizes the jump in the coefficient of the 

problem under consideration during the passage through the ends of 1 : because of biaxial 

symmetry they are identical and equal to exp (an i 6). 
The problem 

S,+ (0) = K, (u) S,- (u), u E 1, (2.8) 

has the continuous coefficient K (u)n-(u)/ If+ (u). Let the index of the problem (2.8) be 

denoted by h. By definition /2/, the index of the problem (2.8) depends on the class of 

the solution of s, (E) and on the length of the contact zone 1. By virtue of symmetry, it 

is even. For solutions bounded on the ends of 1 and a small length albl, it equals C-2), 

(-2mif the number of pairs of contact zones is m). Magnification of the length (I~, bl can 
deflect the value of the index to either side, however, we shall consider small zones so that 

h < 0. 
The canonical solution of the problem (2.8) has the form /2/ 

y+ (E) z= exp I?+ (E), Y- (k) = 5-k clip r- (5),, r(g)=&! 'n,"e'":"' 

lo 

We obtain the canonical solution of the problem (2.6) on the basis of (2.7) and (2.9): 

z (5) = n (E) Y (5) (2.10) 

Therefore, the canonical solution of the problem (2.4) has the form 

1 0 
x (8 = I II 0 x(E) 

(2.11) 

We see that the matrix R(E)X (5) is the funamental solution of the problem (2.1). In fact 

H (u) = X+ (0) IX- (a)]-’ 
Then 

G. (RX-) = RHR-‘RX- = RX+ IX-]-‘X- = RX+ 

det (RX) = det R (E) det X (E) + 0 

since the matrix R(E) is nonsingular on 1, and therefore its determinant is not identically 
zero, Q.E.D. 

The determinant of the matrix R(E) can be represented in the form 

The process of constructing the normal system of solutions from the fundamental consists 

of a finite number of operations on the successive elimination of the zeroes of 6 (E) from 
a finite part of the plane /3/. For the matrix R(E)X (5) the set of these operations is 
equivalent to multiplying it on the right by a matrix Q(E) whose structure has the form 

where (I(E) is a polynomial of order not hither than 212 - 1. The coefficientsofthe dolvnomial 
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are determined by the process mentioned above. 

The matrix of the normal system of solutions has the form 

- 1 
T(E)=RXC)= 

I-Q (9 4- E’“? (E-‘p (5)l i fi (E) 

1 IQ (9 - 5°C (5) 5 (81 i 6 (E) Ii 
The order /3/ of the first column of the matrix T(E) equals zero, while the order of the 

second equals- hfor h< 0 . Let us consider the limit 

where B is the coefficient of the highest term E-h in the expansion T?,(i) in powers of E 
in the neighborhood of the infinitely remote point. Since n # 0, the normal system of 
solutions of T(E) is then canonical /3/, where the particular indexes are 0 and ?,. 

The general solution of the inhomogeneous Riemann problem (1.12) has the form 

(2.12) 

where P (E) m= {PI, P9);P1(E), P, (5) are polynomials of orders Q + 1 and n t i+ hwith undeter- 

mined coefficients. 

The general solution of the problem (1.11) is represented in the form 

Q(E)=YiE){&\ IY’ (jjy (?) do + P (Is)) , Y (E) = ” (E) T (E) (2.13) 

Among all the sets of undertermined coefficients of the vector P (i), there exists that 

which satisfies the conditions of the elasticity theory problem posed, namely: 

a) The condition (the corollary (1.5)) should be satisfied 

5 Q, (5) = 4 (Y) (2.14) 

b) The potentials a($,), Y (E) should have the following form in the neighborhood of 

E=O /l/: 
CD (E) = l- 7 d),, (F;), Y (5) == r’ 7m ‘I’,, (E) (2.15) 

where r, r' are quantities characterizing the load at infinity; (D,(E).'Ur,,(j) are holomorphic 

functions in the neighborhood of E = 0. 

c) Since its derivative, rather than the displacement itself, is given in the initial 

boundary conditions, the displacement is then defined by a solution to the accuracy of an 

arbitrary constant, and the juncture condition for the crack edges should be satisfied 

c' IO (a)1 - u IO @)I z w (ii) - 0 (a) (2.16) 

Upon using the conditions (2.14) and (2.15), the elements of the matrix T(E) should be 

expanded in a Taylor series in the neighborhood of E 0. In addition, the integrals being 

understood in (2.13), are subject to expansion in a power series in E. Upon usinq conditions 

(2.15), it should 

terms of Q(E) in 

@ (E) 0)' (E) = 

The relationships 

Formula (2.17) is 

notation taken in 

obtained by differentiation of the last equation of (1.1) and using the 

(1.3) 
The calculational labour can be reduced significantly if the results in /4/ are used: 

For problems possessing biaxial symmetry, expansions of the complex potentials 0 (E), '1' (5) 
in powers of E have only even powers and real coefficients. The functions: s(j); elements 

T,,(k), T,,(E) of the second column of the matrix T (E), the integrals I' (t). 1' (t) being under- 

stood in (2.13),indeed possess the properties of such symmetry. Confirmation of this asser- 

tion consists of confirming compliance of the equalities F (-k) = F (5). F (E, ~- p (C) for 

each of these functions. Hence, expansions with real coefficients are valid 

be taken into account that the potentials CD g) and 'v(i) are expressed in 

the form 

(2.16) can be rewritten in the form 
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Now, a deduction can be made from (2.13) that odd coefficients of 

p (E) are zero, while the even are real. 

It should be noted that the load at infinity should be matched to 

contact zone; for a given load the normal stress at the point a of the 

zero (the line is taken from inside 1). 
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the polynomials P,(g), 

the width of the 

contour I, should be 

Remark lo. The computations remain in force if the number of pairs of contact zones 

is m. Here only the function H(E) that has the following form in this case 

U+(c) =i n,+(t) 

i-1 

varies, and II,*(~) are understood to be the expressions in the right sides of the formulas 

considered in (2.7). It should be taken into account that a is now understood to be aj 

the beginning of the zone j, and 6 is understood to be ej, a constant characterizing the' 

jump in the coefficient K, ((T) at the point aj. 

20. Upon constructing the canonical solution of the problem (2.1), the condition h< 0, 

taken from physical considerations, is imposed on the index of the particular problem (2.6). 

In general, any value of b, particularly 1>0 is allowable. In the latter case, T(E) will 

not be a canonical solution and definite procedures /3/ will be required to construct this 

latter. The set of procedures on the construction of a canonical solution can be replaced 

by a matrix factor acting on the normal solution of T(t) from the right. 
The subsequent reasoning remains valid. 

3. Example. Crack of elliptical profile. Let the crack have a width 2d and a 

span 2D.. The crack contour is mapped into the unit circle I~ by the functions 
z z o (5) = A (5-l + m 5), .4 =: '/z(U - d), m = (D + d) / (D - d) > i 

Equation (1.1) has the coefficient G(a) and free term g(a) in the form 

1 
C(G) = II x (m - 1) (3 + 5-l) (x .+ 1) (m - G*) 

(x + m) (3tP - 5-l) (x + 1) (G-2 - m) (1 - m) (3 + G-1) II 
m-l 32+ 1 

g (3) = $4 $( + m $2 (&Z _ 1) II 
detG(n)L:-E2(O2~E2)/(~*-1/f2) 

The matrix ft(Qand the normalizing factor O(E) have the form 

6 (5) = A (IIL + I) (5” - l), e = (m - 1) .z (I) 

where z(1) is evaluated by means of (2.10). Since n=l, then the matrices S(E),P(E) have 

the form 

E (5) =II,'-' ;_q, P (;);/I Po’+ ‘1;;’ pE 11 

Because of the above pll = 0; P,l, PII, PO2 are real. 

Let us determine the unknown coefficients by using the expansions (2.18). The condition 

(2.14) adds nothing new; it just confirms the real nature of the coefficients. Representa- 

tion of the potentials Q,(5), Y(EJ in the form (2.15) yields two coefficients: 

J',' = - I,,' + A (r’ L(m - 1) z (1) + z (O)] + r (mz - 1) z (i)} x [r (0) (m + I)]-', P,' = - 10' + A (F' + (m + 1) f') [z (0)1-l 

As a result of integrating, the relationship (2.17) becomes 

2 I* [o (5) - 0 WI = P,‘q + EC* 

where ol, o2 are some constants. This latter expression determines P,’ uniquely. In order 

to match the load at infinity with the width of the contact zone, we consider r and r'func- 

tions of the parameter v. Then the vector Q (ii, therefore,Q(k) and '4%) will also be func- 
tionsofthis parameter. The expressionofthenormalstress q, (5,~) interms ofthelatterisgiven 

by (1.1) and (1.5). Solving the equation 
Q ((I, 7) = 0 

we obtain a value of the parameter y matching the value under consideration. 
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